The grid method is a technique suitable for the measurement of in-plane displacement and strain components on specimens undergoing a small deformation. It relies on a regular marking of the surfaces under investigation. Various techniques are proposed in the literature to retrieve these sought quantities from images of regular markings, but recent advances show that techniques developed initially to process fringe patterns lead to the best results. The grid method features a good compromise between measurement resolution and spatial resolution, thus making it an efficient tool to characterise strain gradients. Another advantage of this technique is the ability to establish closed-form expressions between its main metrological characteristics, thus enabling to predict them within certain limits. In this context, the objective of this paper is to give the state of the art in the grid method, the information being currently spread out in the literature. We propose first to recall various techniques that were used in the past to process grid images, to focus progressively on the one that is the most used in recent examples: the windowed Fourier transform. From a practical point of view, surfaces under investigation must be marked with grids, so the techniques available to mark specimens with grids are presented. Then we gather the information available in the recent literature to synthesise the connection between three important characteristics of full-field measurement techniques: the spatial resolution, the measurement resolution and the measurement bias. Some practical information is then offered to help the readers who discover this technique to start using it. In particular, programmes used here to process the grid images are offered to the readers on a dedicated website. We finally present some recent examples available in the literature to highlight the effectiveness of the grid method for in-plane displacement and strain measurement in real situations.