Abbreviations: CID: collision induced dissociation; HexCer: hexosylceramide; LC-MS/MS: liquid chromatography-tandem mass spectrometry; SM: sphingomyelin; SphK1: sphingosine kinase 1; SphK2: sphingosine kinase 2; UVPD: ultraviolet photodissociation.
AbstractThe number, position, and configuration of double bonds in lipid acyl chains affects membrane packing, fluidity, and recruitment of signalling proteins. Studies on mammalian sphingolipids have focused on those with a saturated sphinganine or mono-unsaturated sphingosine long chain base. Sphingolipids with a diunsaturated sphingadiene base have been reported but are poorly characterised. Employing high-resolution untargeted mass spectrometry, we observed marked accumulation of lipids containing a sphingadiene base, but not those with a more common sphingosine backbone, in the hippocampus of mice lacking the metabolic enzyme sphingosine kinase 2 (SphK2). Applying ultraviolet photodissociation tandem mass spectrometry (UVPD-MS/MS) the double bonds were confidently assigned to the C4-C5 and C14-C15 positions of the sphingoid base. Sphingosine kinases are involved in lysosomal catabolism of all sphingolipids, producing sphingoid base phosphates that are irreversibly degraded by sphingosine 1-phosphate lyase. Both SphK1 and SphK2 phosphorylated sphinga-4,14-diene as efficiently as sphingosine, however deuterated tracer experiments demonstrated that ceramides with a sphingosine base are more rapidly metabolised in cultured cells than those with a sphingadiene base. SphK2 silencing significantly impeded the catabolism of both sphingosine-and sphingadiene-based sphingolipids. Since SphK2 is the dominant sphingosine kinase in brain, we propose that accumulation of sphingadiene lipids in SphK2-deficient brains results from the intrinsically slower catabolism of sphingadiene lipids, combined with a bottleneck in the catabolic pathway created by the absence of SphK2. We speculate that accumulation of these lipids in the absence of SphK2 function may affect the fluidity and signalling properties of cell membranes.