2013
DOI: 10.1007/s11433-013-5127-0
|View full text |Cite
|
Sign up to set email alerts
|

Quantitative sufficient conditions for adiabatic approximation

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
5
0
2

Year Published

2013
2013
2017
2017

Publication Types

Select...
8

Relationship

2
6

Authors

Journals

citations
Cited by 18 publications
(7 citation statements)
references
References 18 publications
0
5
0
2
Order By: Relevance
“…This transitionless evolution is ensured by the adiabatic theorem, which is one of the oldest and most explored tools in quantum mechanics 1 2 3 . The huge amount of applications of the adiabatic behavior has motivated renewed interest in the adiabatic theorem, which has implied in its rigorous formulation 4 5 6 7 8 9 10 as well as in new bounds for adiabaticity 11 12 13 . In quantum information processing, the adiabatic theorem is the basis for the methodology of adiabatic quantum computation (AQC) 14 , which has been originally proposed as an approach for the solution of hard combinatorial search problems.…”
mentioning
confidence: 99%
See 1 more Smart Citation
“…This transitionless evolution is ensured by the adiabatic theorem, which is one of the oldest and most explored tools in quantum mechanics 1 2 3 . The huge amount of applications of the adiabatic behavior has motivated renewed interest in the adiabatic theorem, which has implied in its rigorous formulation 4 5 6 7 8 9 10 as well as in new bounds for adiabaticity 11 12 13 . In quantum information processing, the adiabatic theorem is the basis for the methodology of adiabatic quantum computation (AQC) 14 , which has been originally proposed as an approach for the solution of hard combinatorial search problems.…”
mentioning
confidence: 99%
“…However, since these processes are ruled by the adiabatic approximation, it turns out that each gate of the adiabatic circuit will be implemented within some fixed probability (for a finite evolution time). Moreover, the time for performing each individual gate will be bounded from below by the adiabatic time condition 4 5 6 7 8 9 10 . For a recent analysis on adiabatic control of quantum gates and its corresponding non-adiabatic errors, see ref.…”
mentioning
confidence: 99%
“…Из теоремы 1 мы видим, что адиабатическое приближенное решение |ψ adi g (t)⟩ совпадает с точным решением |ψ(t)⟩ уравнения (1), если и только если вектор основного состояния не зависит от времени. Это заключение такое же, как утверждение из работы [10] для эрмитова случая. В общем случае вектор основного состояния зависит от времени и, следовательно, необходимо оценить ошибку решения…”
Section: 2unclassified
“…Если гамильтониан H(t) эрмитов, то мы имеем унитарную эволюцию, и решение уравнения Шредингера (1) представляет собой квантовое состояние, если таковым является начальное состояние. При этом неравенство (25) сводится к 1 − |⟨ψ(t)|E g (t)⟩| < δ, и это согласуется с определением, данным в работе [10]. Кроме того, если ни при каком t ∈ [0, T ] для вектора основного состояния не выполнено условие…”
Section: вэнь-хуа ван хуай-синь цао чжэн-ли чэньunclassified
“…Furthermore, generalizing QAC for open quantum systems [27,38] and many-body systems [39] have been achieved. Efforts for finding conditions that can replace QAC were made [40][41][42].…”
Section: Quantitative Adiabatic Conditionmentioning
confidence: 99%