Identification of genome regions linked to Cephalosporium stripe resistance across two populations on chromosome 3BS, 4BS, 5AL, C5BL. Results were compared to a similar previous study. Cephalosporium stripe is a vascular wilt disease of winter wheat (Triticum aestivum L.) caused by the soil-borne fungus Cephalosporium gramineum Nisikado & Ikata. In the USA it is known to be a recurring disease when susceptible cultivars are grown in the wheat-growing region of Midwest and Pacific Northwest. There is no complete resistance in commercial wheat cultivars, although the use of moderately resistant cultivars reduces the disease severity and the amount of inoculum in subsequent seasons. The goal of this study was to detect and to compare chromosomal regions for resistance to Cephalosporium stripe in two winter wheat populations. Field inoculation was performed and Cephalosporium stripe severity was visually scored as percent of prematurely ripening heads (whiteheads) per plot. 'Tubbs'/'NSA-98-0995' and 'Einstein'/'Tubbs', each comprising a cross of a resistant and a susceptible cultivar, with population sizes of 271 and 259 F (5:6) recombinant inbred lines, respectively, were genotyped and phenotyped across four environments. In the quantitative trait loci (QTL) analysis, six and nine QTL were found, explaining in total, around 30 and 50 % of the phenotypic variation in 'Tubbs'/'NSA-98-0995' and 'Einstein'/'Tubbs', respectively. The QTL with the largest effect from both 'NSA-98-0995' and 'Einstein' was on chromosome 5AL.1 and linked to marker gwm291. Several QTL with smaller effects were identified in both populations on chromosomes 5AL, 6BS, and 3BS, along with other QTL identified in just one population. These results indicate that resistance to Cephalosporium stripe in both mapping populations was of a quantitative nature.