In metastasis, the cancer cells that travel through the body are capable of establishing new tumors in locations remote from the site of the original disease. To metastasize, a cancer cell must break away from its tumor and invade either the circulatory or lymphatic system, which will carry it to a new location, and establish itself in the new site. Once in the blood stream, the cancer cells now have access to every portion of the body. Here, we have used the ''in vivo flow cytometer'' to study if there is any relationship between metastatic potential and depletion kinetics of circulating tumor cells. The in vivo flow cytometer has the capability to detect and quantify continuously the number and flow characteristics of fluorescently labelled cells in vivo. We have improved the counting algorithm and measured the depletion kinetics of cancer cells with different metastatic potential. Interestingly, more invasive PC-3 prostate cancer cells are depleted faster from the circulation than LNCaP cells. In addition, we have measured the depletion kinetics of two related human hepatocellular carcinoma (liver cancer) cell lines, high-metastatic HCCLM3 cells, and low-metastatic HepG2 cells. More than 60% HCCLM3 cells are depleted within the first hour. Interestingly, the low-metastatic HepG2 cells possess noticeably slower depletion kinetics. In comparison, \40% HepG2 cells are depleted within the first hour. The differences in depletion kinetics might provide insights into early metastasis processes. ' 2011 International Society for Advancement of Cytometry Key terms in vivo flow cytometer; cancer metastasis; circulating tumor cells; prostate cancer; hepatocellular carcinoma; in vivo confocal imaging METASTASIS is a complicated process that has yet to be completely understood. In metastasis, the cancer cells that travel through the body are capable of establishing new tumors in locations remote from the site of the original disease. To metastasize, a cancer cell must break away from its tumor and invade either the circulatory or lymph system (1-3). Once in the blood stream, the cancer cells now have access to every portion of the body. The cancer cells in the bloodstream must fight the body's defense system and try to reattach itself in a new location. Fewer than 1 in 10,000 cancer cells survive circulation to create a new tumor. The circulation of the blood plays an important role in determining where cancer cells travel. The cancer cells usually are trapped in the first set of capillaries that they encounter downstream from their point of entry. These capillaries are often in the lung, since returning deoxygenated venous blood leaving many organs is returned to the lung for reoxygenation. From the intestines, the blood go to the liver first, thus cancer cells leaving the intestines will go there. Therefore, the lung and the liver are the two most common sites for metastasis in the human body. Many circulating cancer cells cannot finish the entire process of metastasis (4).