Quantitative Understanding of Ionic Channel Network Variation in Nafion with Hydration Using Current Sensing Atomic Force Microscopy
Osung Kwon,
Jihoon Lee,
Hyungju Son
et al.
Abstract:Proton exchange membranes are an essential component of proton-exchange membrane fuel cells (PEMFC). Their performance is directly related to the development of ionic channel networks through hydration. Current sensing atomic force microscopy (CSAFM) can map the local conductance and morphology of a sample surface with sub-nano resolution simultaneously by applying a bias voltage between the conducting tip and sample holder. In this study, the ionic channel network variation of Nafion by hydration has been qua… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.