The fault diagnosis and control through fault detection, isolation and supply restoration (FDIR) technique is the part of a commonly used distribution management system application in smart grid. When the fault occurs, it becomes essential to detect and isolate the faulty section of the distribution network at once and then restore back to its running condition through tie switches. The communication between IEDs is done through different communication mediums such as Ethernet, wireless, power line communication etc. Therefore, formal analysis of the FDIR mechanism is required with communication network (ideally Ethernet), which helps us to predict the behavior of FDIR response upon the occurrence of fault in terms of various important probabilities, reliability study and efficiency (showing the system will work properly). In this regard, for the above said analyses, this article discusses (a) the development of the Markovian model of FDIR for distribution network of smart grid considering Tianjin Electric Power Network as case study with intelligent electronic devices (IEDs) using ideal communication medium (Ethernet); (b) utilized probabilistic model checker (PRISM tool) to predict the probabilities; (c) perform the reliability analyses and (d) study the efficiency of FDIR behavior for future grid using logical properties. The detailed analysis and prediction (done for the fault occurrence scenario) mainly focus in determining the (1) the probability of switching failures of FDIR in smart grid; (2) the probability of isolating the defective switch from the system within limited time and (3) the probability of restoring the system automatically within the minimum possible interval.
KeywordsFDIR • Ethernet • Smart grid • Markov model • Model checking • Stochastic analysis Abbreviations FDIR Fault detection, isolation and restore supply of system FTU Feeder terminal unit CB Circuit breaker DFA Distributed feeder automation FASM FDIR message start ISOM Isolation message result RESM Restoration message result IED Intelligent electrical device