Optimizing thermal and mechanical properties of clay block masonry requires detailed knowledge on the microstructure of fired clays. We here identify the macro-and microporosity stemming from the use of three different poreforming agents (expanded polystyrene, sawdust, and paper sludge) in different concentrations. Micro-CT measurements provided access to volume, shape, and orientation of macropores, and in combination with X-ray attenuation averaging and statistical analysis, also to voxel-specific microporosities. Finally, the sum of micro-and macroporosity was compared to corresponding data gained from two statistically and physically independent methods (namely from chemical analysis in combination with weighing, and from mercury intrusion porosimetry). Satisfactory agreement of all these independently gained experimental data renders our new concept for identifying the pore spaces of fired clay as a very promising tool supporting the further optimization of clay blocks.