2020
DOI: 10.1007/978-3-030-36138-9_20
|View full text |Cite
|
Sign up to set email alerts
|

Quantization and Coorbit Spaces for Nilpotent Groups

Abstract: We reconsider the quantization of symbols defined on the product between a nilpotent Lie algebra and its dual. To keep track of the non-commutative group background, the Lie algebra is endowed with the Baker-Campbell-Hausdorff product, making it via the exponential diffeomorphism a copy of its unique connected simply connected nilpotent Lie group. Using harmonic analysis tools, we emphasize the role of a Weyl system, of the associated Fourier-Wigner transformation and, at the level of symbols, of an important … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 38 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?