Quantization‐Based Latin Hypercube Sampling for Dependent Inputs With an Application to Sensitivity Analysis of Environmental Models
Guerlain Lambert,
Céline Helbert,
Claire Lauvernet
Abstract:Numerical models are essential for comprehending intricate physical phenomena in different domains. To handle their complexity, sensitivity analysis, particularly screening is crucial for identifying influential input parameters. Kernel‐based methods, such as the Hilbert‐Schmidt Independence Criterion (HSIC), are valuable for analyzing dependencies between inputs and outputs. Implementing HSIC requires data from the original model, which leads to the need of efficient sampling strategies to limit the number of… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.