Abstract:Quantization of Convolutional Neural Networks (CNNs) is a common approach to ease the computational burden involved in the deployment of CNNs, especially on low-resource edge devices. However, fixed-point arithmetic is not natural to the type of computations involved in neural networks. In this work, we explore ways to improve quantized CNNs using PDE-based perspective and analysis. First, we harness the total variation (TV) approach to apply edge-aware smoothing to the feature maps throughout the network. Thi… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.