This study investigates the problem of rapid search planning for moving targets in maritime emergencies using an improved adaptive immune genetic algorithm. Given the complexity and uncertainty inherent in searching for moving targets in maritime emergency situations, a task planning method based on the improved adaptive immunogenetic algorithm (IAIGA) is proposed to enhance search efficiency and accuracy. This method utilizes a priori information to construct the potential regions of the target and the distribution probability within each region. It establishes a “prediction-scheduling” search strategy model, planning a rapid search task for disconnected targets based on overlapping probability through the IAIGA. By incorporating an immune mechanism, the algorithm enhances its global search capability and robustness. Additionally, the adaptive strategy enables dynamic adjustment of the algorithm’s parameters to accommodate varying search scenarios. The experimental results demonstrate that the proposed IAIGA significantly outperforms traditional methods, providing higher search speeds and more accurate search results in the context of maritime emergency response. These findings offer effective technical support for maritime emergency operations.