The calculation of higher-order corrections in Quantum Field Theories is a challenging task. In particular, dealing with multiloop and multileg Feynman amplitudes leads to severe bottlenecks and a very fast scaling of the computational resources required to perform the calculation. With the purpose of overcoming these limitations, we discuss efficient strategies based on the Loop-Tree Duality, its manifestly causal representation and the underlying geometrical interpretation. In concrete, we exploit the geometrical causal selection rules to define a Hamiltonian whose ground-state is directly related to the terms contributing to the causal representation. In this way, the problem can be translated into a minimization one and implemented in a quantum computer to search for a potential speed-up.