Classical game theory is an important field with a long tradition of useful results. Recently, the quantum versions of classical games, such as the prisoner’s dilemma (PD), have attracted a lot of attention. This game variant can be considered as a specific type of game where the player’s actions and strategies are formed using notions from quantum computation. Similarly, state machines, and specifically finite automata, have also been under constant and thorough study for plenty of reasons. The quantum analogues of these abstract machines, like the quantum finite automata, have been studied extensively. In this work, we examine well-known conditional strategies that have been studied within the framework of the classical repeated PD game. Then, we try to associate these strategies to proper quantum finite automata that receive them as inputs and recognize them with a probability of 1, achieving some interesting results. We also study the quantum version of PD under the Eisert–Wilkens–Lewenstein scheme, proposing a novel conditional strategy for the repeated version of this game.