2022
DOI: 10.1002/qua.27046
|View full text |Cite
|
Sign up to set email alerts
|

Quantum chemical modeling of electron‐deficient hollow TlkPb12–k and TlkBi20–k shells and related endohedral complexes (k = 1; 2)

Abstract: The equilibrium structural parameters, symmetry groups, and dipole moments of the free hollow electron-deficient TlBi 19 , Tl 2 Bi 18 , p-, m-, o-Tl 2 Pb 10 shells and the endohedral (He, Ne)

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
2
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

1
0

Authors

Journals

citations
Cited by 1 publication
(2 citation statements)
references
References 40 publications
0
2
0
Order By: Relevance
“…We express the oxidation or reduction number (Ξ or -Ξ, respectively) of the X atom and the atomic group R in the XR molecule having an electric charge ξ through the populations of localized spin-orbitals (n) using formulas ( 1)-( 6) and VALENCY-22 code [22] developed with open source linear algebra libraries OpenBLAS and Armadillo and cross-platform GUI library wxWidgets.…”
Section: Computational Detailsmentioning
confidence: 99%
See 1 more Smart Citation
“…We express the oxidation or reduction number (Ξ or -Ξ, respectively) of the X atom and the atomic group R in the XR molecule having an electric charge ξ through the populations of localized spin-orbitals (n) using formulas ( 1)-( 6) and VALENCY-22 code [22] developed with open source linear algebra libraries OpenBLAS and Armadillo and cross-platform GUI library wxWidgets.…”
Section: Computational Detailsmentioning
confidence: 99%
“…We express the oxidation or reduction number (Ξ or –Ξ, respectively) of the X atom and the atomic group R in the XR molecule having an electric charge ξ through the populations of localized spin‐orbitals (n) using formulas (1)–(6) and VALENCY‐22 code [22] developed with open source linear algebra libraries OpenBLAS and Armadillo and cross‐platform GUI library wxWidgets. ΞX=ZXnormaljnormalXEntireprefixfalse(nj+normalεpostfixfalse)true.$$ {\Xi}_{\mathrm{X}}={\mathrm{Z}}_{\mathrm{X}}-{\sum}_{\mathrm{j}\in \mathrm{X}} Entire\left({n}_{\mathrm{j}}+\upvarepsilon \right). $$ boldSPSXX0.25emCXjgoodbreak=SXX0.25emCXj0.25emnj.$$ {\left(\mathbf{SPS}\right)}_{\mathrm{XX}}\ {\mathbf{C}}_{\mathrm{Xj}}={\mathbf{S}}_{\mathrm{XX}}\ {\mathbf{C}}_{\mathrm{Xj}}\ {n}_{\mathrm{j}}.…”
Section: Computational Detailsmentioning
confidence: 99%