We study the Felderhof free-fermion six-vertex model, whose wavefunction recently turned out to possess rich combinatorial structure of the Schur polynomials. We investigate the dual version of the wavefunction in this paper, which seems to be a harder object to analyze. We evaluate the dual wavefunction in two ways. First, we give the exact correspondence between the dual wavefunction and the Schur polynomials, for which two proofs are given. Next, we make a microscopic analysis and express the dual wavefunction in terms of strict Gelfand-Tsetlin pattern. As a consequence of these two ways of evaluation of the dual wavefunction, we obtain a dual version of the Tokuyama combinatorial formula for the Schur polynomials. We also give a generalization of the correspondence between the dual wavefunction of the Felderhof model and the factorial Schur polynomials.Mathematics Subject Classification. 05E05, 05E10, 16T25, 16T30, 17B37.