Quantum combinatorial designs and $k$-uniform states
Yajuan Zang,
Paolo Facchi,
Zihong Tian
Abstract:Goyeneche et al. [Phys. Rev. A 97, 062326 (2018)] introduced several classes of quantum combinatorial designs, namely quantum Latin squares, quantum Latin cubes, and the notion of orthogonality on them. They also showed that mutually orthogonal quantum Latin arrangements can be entangled in the same way in which quantum states are entangled. Moreover, they established a relationship between quantum combinatorial designs and a remarkable class of entangled states called k-uniform states, i.e., multipartite pure… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.