Stimulated Raman adiabatic passage (STIRAP) is a standard technique to combat experimental imperfections and can be used to realize robust quantum state control, which has many applications in physics, chemistry, and beyond. However, STIRAP is susceptible to decoherence since it requires long evolution time. To overcome this problem, stimulated Raman ‘user-defined’ passage (STIRUP) is proposed, which allows users to design the passages unlike the STIRAP but fast and robust against both decoherence and experimental imperfections. Here, we further develop a more general STIRUP method. Comparing with shortcut to adiabaticity and its’ variants, the generalized STIRUP is more simpler and compatible with more complex energy-level structure and many-body systems. Furthermore, the generalized STIRUP has many important applications such as geometric phase measurement, coherent population transfer, and quantum state preparation. Specifically, as examples, we show how to realize the high-fidelity quantum state transfer and entangled state generation in a robust way via STIRUP with the state-of-the-art experimental superconducting circuits.