We analyze the effect of the generalized uncertainty (GUP) principle on the Hawking radiation from the hairy black hole in U(1) gauge-invariant scalar-vector-tensor theory by utilizing the semiclassical Hamilton-Jacobi method. To do so, we evaluate the tunneling probabilities and Hawking temperature for scalar and fermion particles for the given spacetime of the black holes with cubic and quartic interactions. For this purpose, we utilize the modified Klein-Gordon equation for the Boson particles and then Dirac equations for the fermion particles, respectively. Next, we examine that the Hawking temperature of the black holes do not depend on the properties of tunneling particles. Moreover, we present the corrected Hawking temperature of scalar and fermion particles looks similar in both interactions, but there are different mass and momentum relationships for scalar and fermion particles in cubic and quartic interactions.