Within the context of AdS/CFT correspondence, we first compute the one-loop infrared (IR) divergences of 7D Einstein gravity in a certain Poincaré-Einstein background metric. Then, we compute the one-loop ultraviolet (UV) divergences of 6D conformal gravity on the conformal boundary. We verify the equality of the above results that stem from the IR-UV connection of the duality dictionary. Key ingredients are heat kernel techniques, factorization of the boundary higher-derivative kinetic operator for the Weyl graviton on the 6D Einstein metric, and Wentzel-Kramers-Brillouin (WKB) exactness of the Einstein graviton in the chosen 7D Poincaré-Einstein background. Overall, we elucidate the way in which the 6D results containing the type-A and type-B conformal anomalies for the Weyl graviton are encoded in the 7D "hologram" given by the fluctuation determinant for the Einstein graviton. We finally discuss possible extensions to include higher-spin fields.