Over the last two decades, intensive research efforts have been devoted to the suppressions of photoluminescence (PL) blinking and Auger recombination in metal-chalcogenide nanocrystals (NCs), with significant progresses being made only very recently in several specific heterostructures. Here we show that nonblinking PL is readily available in the newly-synthesized perovskite CsPbI 3 (cesium lead iodide) NCs, and their Auger recombination of charged excitons is greatly slowed down, as signified by a PL lifetime about twice shorter than that of neutral excitons. Moreover, spectral diffusion is completely absent in single CsPbI 3 NCs at the cryogenic temperature, leading to a resolution-limited PL linewidth of ~200 μeV.