This review provides a brief and quick introduction to the quantum Langevin equation for an oscillator, while focusing on the steady-state thermodynamic aspects. A derivation of the quantum Langevin equation is carefully outlined based on the microscopic model of the heat bath as a collection of a large number of independent quantum oscillators, the so-called independent-oscillator model. This is followed by a discussion on the relevant ‘weak-coupling’ limit. In the steady state, we analyze the quantum counterpart of energy equipartition theorem which has generated a considerable amount of interest in recent literature. The free energy, entropy, specific heat, and third law of thermodynamics are discussed for one-dimensional quantum Brownian motion in a harmonic well. Following this, we explore some aspects of dissipative diamagnetism in the context of quantum Brownian oscillators, emphasizing upon the role of confining potentials and also upon the environment-induced classical-quantum crossover. We discuss situations where the system-bath coupling is via the momentum variables by focusing on a gauge-invariant model of momentum-momentum coupling in the presence of a vector potential; for this problem, we derive the quantum Langevin equation and discuss quantum thermodynamic functions. Finally, the topic of fluctuation theorems is discussed (albeit, briefly) in the context of classical and quantum cyclotron motion of a particle coupled to a heat bath.