2016
DOI: 10.22436/jnsa.009.06.04
|View full text |Cite
|
Sign up to set email alerts
|

Quantum difference Langevin equation with multi-quantum numbers q-derivative nonlocal conditions

Abstract: In the present paper, we study a new class of boundary value problems for Langevin quantum difference equations with multi-quantum numbers q-derivative nonlocal conditions. Some new existence and uniqueness results are obtained by using standard fixed point theorems. The existence and uniqueness of solutions is established by Banach's contraction mapping principle, while the existence of solutions is derived by using Krasnoselskii's fixed point theorem and Leray-Schauder's nonlinear alternative. Examples illus… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 23 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?