The surface of gold nanoparticles
(AuNPs) can be conjugated with
a wide range of highly functional biomolecules. A common pitfall when
utilizing AuNPs is their tendency to aggregate, especially when their
surface is functionalized with ligands of low molecular weight (no
steric repulsion) or ligands of neutral charge (no electrostatic repulsion).
For biomedical applications, AuNPs that are colloidally stable are
desirable because they have a high surface area and thus reactivity,
resist sedimentation, and exhibit uniform optical properties. Here,
we engineer the surface of AuNPs so that they remain stable when decorated
with coiled-coil (CC) peptides while preserving the native polypeptide
properties. We achieve this by using a neutral, mixed ligand layer
composed of lipoic acid poly(ethylene glycol) and lipoic acid poly(ethylene
glycol) maleimide to attach the CCs. Tuning the surface fraction of
each component within the mixed ligand layer also allowed us to control
the degree of AuNP labeling with CCs. We demonstrate the dynamic surface
properties of these CC-AuNPs by performing a place-exchange reaction
and their utility by designing an energy-transfer-based caspase-3
sensor. Overall, this study optimizes the surface chemistry of AuNPs
to quantitatively present functional biomolecules while maintaining
colloid stability.