As a possible physical realization of a quantum information processor, a system with stacked self-assembled InAs quantum dots buried in GaAs adjacent to the channel of a spin field-effect transistor has been proposed. In this system, only one of the stacked qubits, i.e., the edge qubit ͑the qubit closest to the channel͒, is measurable via "spin-blockade measurement." It is shown that the state tomography of the whole chain of the qubits is still possible even under such a restricted accessibility. The idea is to make use of the entangling dynamics of the qubits. A recipe for the two-qubit system is explicitly constructed and the effect of an imperfect fidelity of the measurement is clarified. A general scheme for multiple qubits based on repeated measurements is also presented.