We show that if one cylindrical lens is placed in the Gaussian beam waist and another cylindrical lens is placed at some distance from the first one and rotated by some angle, then the laser beam after the second lens has an orbital angular momentum (OAM). An explicit analytical expression for the OAM of such a beam is obtained. Depending on the inter-lens distance, the OAM can be positive, negative, or zero. Such a laser beam has no isolated intensity nulls with a singular phase and it is not an optical vortex, but has an OAM. By choosing the radius of the beam waist of the source Gaussian beam, the focal lengths of the lenses and the distance between them, it is possible to generate a vortex-free laser beam equivalent to an optical vortex with a topological charge of several hundreds.Keywords: elliptic Gaussian beam, cylindrical lens, orbital angular momentum. (inϕ), where (r, ϕ) are the polar coordinates, A(r) is the radial term of the beam complex amplitude and n is the topological charge of the optical vortex. The OAM density and the total OAM per photon of such beams equals the topological charge n. Two questions arise. The first question is whether all laser beams with non-zero OAM have the phase dislocation and the helical wavefront or there are other beams with the OAM. The second question is what the maximal OAM is that can be practically obtained. The answer for the first question is positive and it can be found in [7], where the OAM has been calculated for an elliptic Gaussian beam focused by a cylindrical lens. Using a theoretical estimation, it has been shown in this work that the OAM of such beam can be equal to 10000 per photon. However, in [7] a beam with the OAM per photon equal only to 25 has been implemented in practice. We note that the idea of assignment of an OAM to a laser beam by using a cylindrical lens has been firstly introduced in [8]. It has been shown experimentally in [8] that after passing a cylindrical lens a HermiteGaussian beam without the OAM at certain propagation distance and at certain conditions transforms to a LaguerreGaussian beam with the OAM.In works [9 -12] there are attempts to answer the second question and to obtain as large as possible OAM value. In [9], it was proposed to increase the OAM by using