We present a construction of integrable hierarchies without or with boundary, starting from a single R-matrix, or equivalently from a ZF algebra. We give explicit expressions for the Hamiltonians and the integrals of motion of the hierarchy in term of the ZF algebra. In the case without boundary, the integrals of motion form a quantum group, while in the case with boundary they form a Hopf coideal subalgebra of the quantum group.
MSC-classification: 81R10, 81R12This paper is based on talks given at -5