Quantum-clock interferometry has been suggested as a quantum probe to test the universality of free fall and the universality of gravitational redshift. In typical experimental schemes, it seems advantageous to employ Doppler-free E1–M1 transitions which have so far been investigated in quantum gases at rest. Here, we consider the fully quantized atomic degrees of freedom and study the interplay of the quantum center-of-mass (COM)—that can become delocalized—together with the internal clock transitions. In particular, we derive a model for finite-time E1–M1 transitions with atomic intern–extern coupling and arbitrary position-dependent laser intensities. We further provide generalizations to the ideal expressions for perturbed recoilless clock pulses. Finally, we show, at the example of a Gaussian laser beam, that the proposed quantum-clock interferometers are stable against perturbations from varying optical fields for a sufficiently small quantum delocalization of the atomic COM.