2023
DOI: 10.1088/1367-2630/acdb93
|View full text |Cite
|
Sign up to set email alerts
|

Quantum information approach to the implementation of a neutron cavity

Abstract: Using the quantum information model of dynamical diffraction we consider a neutron cavity composed of two perfect crystal silicon blades capable of containing the neutron wavefunction. We show that the internal confinement of the neutrons through Bragg diffraction can be modelled by a quantum random walk. Furthermore, we introduce a toolbox for modelling crystal imperfections such as surface roughness and defects. Good agreement is found between the simulation and the experimental implementation, where leakage… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 30 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?