The information-theoretic measure of confined hydrogen atom has been investigated extensively in the literature. However, most of them were focused on the ground state and accurate values of information entropies, such as Shannon entropy, for confined hydrogen are still not determined. In this work, we establish the benchmark results of the Shannon entropy for confined hydrogen atom in a spherical impenetrable sphere, in both position and momentum spaces. This is done by examining the bound state energies, the normalization of wave functions, and the scaling property with respect to isoelectronic hydrogenic ions. The angular and radial parts of Shannon entropy in two conjugate spaces are provided in detail for both free and confined hydrogen atom in ground and several excited states. The entropies in position space decrease logarithmically with decreasing the size of confinement, while those in momentum space increase logarithmically. The Shannon entropy sum, however, approaches to finite values when the confinement radius closes to zero. It is also found that the Shannon entropy sum shares same trend for states with similar density distributions. Variations of entropy for nodeless bound states are significantly distinct form those owning nodes when changing the confinement radius. K E Y W O R D S confined hydrogen atom, momentum space, radial entropy, Shannon entropy Int J Quantum Chem. 2017;117:e25375. https://doi.org/10.1002/qua.25375.