In the face of advancing quantum computing capabilities posing significant threats to current cryptographic protocols, the need for post-quantum cryptography has become increasingly urgent. This paper presents a comprehensive analysis of the performance of various post-quantum cryptographic algorithms specifically applied to digital signatures. It focuses on the implementation and performance analysis of selected algorithms, including CRYSTALS-Dilithium, Falcon, and SPHINCS+, using the liboqs library. Performance tests reveal insights into key pair generation, file signing, and signature verification processes. Comparative tests with the well-known and popular RSA algorithm highlight the trade-offs between security and time efficiency. The results can help to select secure and efficient ciphers for specific 5G/6G services.