The integration of scheduling and process planning can eliminate resource conflicts and hence improve the performance of a manufacturing system. However, the focus of most existing works is mainly on the optimization techniques to improve the makespan criterion instead of more efficient uses of energy. In fact, with a deteriorating global climate caused by massive coal-fired power consumption, carbon emission reduction in the manufacturing sector is becoming increasingly imperative. To ease the environmental burden caused by energy consumption, e.g., coal-fired power consumption in use of machine tools, this research considers both makespan as well as environmental performance criteria, e.g., total power consumption, in integrated process planning and scheduling using a novel multi-objective memetic algorithm to facilitate a potential amount of energy savings; this can be realized through a better use of resources with more efficient scheduling schemes. A mixed-integer linear programming (MILP) model based on the network graph is formulated with both makespan as well as total power consumption criteria. Due to the complexity of the problem, a multi-objective memetic algorithm with variable neighborhood search (VNS) technique is then developed for this problem. The Kim’s benchmark instances are employed to test the proposed algorithm. Moreover, the TOPSIS decision method is used to determine the most satisfactory non-dominated solution. Several scenarios are considered to simulate different machine automation levels and different machine workload levels. Computational results show that the proposed algorithm can strike a balance between the makespan criterion and the total power consumption criterion, and the total power consumption can be affected by machine tools with different automation levels and different workloads. More importantly, results also show that energy saving can be realized by completing machining as early as possible on a machine tool and taking advantage of machine flexibility.