We formulate a quantum generalization of the notion of the group of Riemannian isometries for a compact Riemannian manifold, by introducing a natural notion of smooth and isometric action by a compact quantum group on a classical or noncommutative manifold described by spectral triples, and then proving the existence of a universal object (called the quantum isometry group) in the category of compact quantum groups acting smoothly and isometrically on a given (possibly noncommutative) manifold satisfying certain regularity assumptions. In fact, we identify the quantum isometry group with the universal object in a bigger category, namely the category of 'quantum families of smooth isometries', defined along the line of Woronowicz and Soltan. We also construct a spectral triple on the Hilbert space of forms on a noncommutative manifold which is equivariant with respect to a natural unitary representation of the quantum isometry group. We give explicit description of quantum isometry groups of commutative and noncommutative tori, and in this context, obtain the quantum double torus defined in [11] as the universal quantum group of holomorphic isometries of the noncommutative torus.