We report a comprehensive muon spectroscopy study of the Zn-barlowite series of $$S=\frac{1}{2}$$
S
=
1
2
kagomé antiferromagnets, ZnxCu4−x(OH)6FBr, for x = 0.00 to 0.99(1). By combining muon spin relaxation and rotation measurements with state-of-the-art density-functional theory muon-site calculations, we observe the formation of both μ–F and μ–OH complexes in Zn-barlowite. From these stopping sites, implanted muon spins reveal the suppression of long-range magnetic order into a possible quantum spin liquid state upon the increasing concentration of Zn-substitution. In the parent compound (x = 0), static long-range magnetic order below TN = 15 K manifests itself in the form of spontaneous oscillations in the time-dependent muon asymmetry signal consistent with the dipolar fields expected from the calculated muon stopping sites and the previously determined magnetic structure of barlowite. Meanwhile, in the x = 1.0 end-member of the series—in which antiferromagnetic kagomé layers of Cu2+$$S=\frac{1}{2}$$
S
=
1
2
moments are decoupled by diamagnetic Zn2+ ions—we observe that dynamic magnetic moment fluctuations persist down to at least 50 mK, indicative of a quantum disordered ground state. We demonstrate that this crossover from a static to dynamic magnetic ground state occurs for compositions of Zn-barlowite with x > 0.5, which bears resemblance to the dynamical behaviour of the widely studied Zn-paratacamite series that contains the quantum spin liquid candidate herbertsmithite.