2022
DOI: 10.1088/1751-8121/ac845b
|View full text |Cite
|
Sign up to set email alerts
|

Quantum monadic algebras

Abstract: We introduce quantum monadic and quantum cylindric algebras. These are adaptations to the quantum setting of the monadic algebras of Halmos, and cylindric algebras of Henkin, Monk and Tarski, that are used in algebraic treatments of classical and intuitionistic predicate logic. Primary examples in the quantum setting come from von Neumann algebras and subfactors. Here we develop the basic properties of these quantum monadic and cylindric algebras and relate them to quantum predicate logic.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 57 publications
0
0
0
Order By: Relevance