Structural identification of double-walled carbon nanotubes (DWNT) is presented through a robust procedure based on the latest generation of transmission electron microscope, making possible a statistical analysis based on numerous nano-objects. This approach reveals that inner and outer tubes of DWNTs are not randomly oriented, suggesting the existence of a mechanical coupling between the two concentric walls. With the support of atomic scale modelisations, we attribute it to the presence of incommensurate domains whose structures depend on the diameters and helicities of both tubes, and where inner tubes try to achieve a local stacking orientation to reduce strain effects.