Silica (SiO 2 ) is an abundant component of the Earth whose crystalline polymorphs play key roles in its structure and dynamics. First principle density functional theory (DFT) methods have often been used to accurately predict properties of silicates, but fundamental failures occur. Such failures occur even in silica, the simplest silicate, and understanding pure silica is a prerequisite to understanding the rocky part of the Earth. Here, we study silica with quantum Monte Carlo (QMC), which until now was not computationally possible for such complex materials, and find that QMC overcomes the failures of DFT. QMC is a benchmark method that does not rely on density functionals but rather explicitly treats the electrons and their interactions via a stochastic solution of Schrödinger's equation. Using ground-state QMC plus phonons within the quasiharmonic approximation of density functional perturbation theory, we obtain the thermal pressure and equations of state of silica phases up to Earth's core-mantle boundary. Our results provide the best constrained equations of state and phase boundaries available for silica. QMC indicates a transition to the dense α-PbO 2 structure above the core-insulating D" layer, but the absence of a seismic signature suggests the transition does not contribute significantly to global seismic discontinuities in the lower mantle. However, the transition could still provide seismic signals from deeply subducted oceanic crust. We also find an accurate shear elastic constant for stishovite and its geophysically important softening with pressure.first principles computations | lower mantle | thermal properties Introduction Silica is one of the most widely studied materials across the fields of materials science, physics, and geology. It plays important roles in many applications, including ceramics, electronics, and glass production. As the simplest of the silicates, silica is also one of the most ubiquitous geophysically important minerals. It can exist as a free phase in some portions of the Earth's mantle. In order to better understand geophysical roles silica plays in Earth, much focus is placed on improving knowledge of fundamental silica properties. Studying structural and chemical properties (1) offers insight into the bonding and electronic structure of silica and provides a realistic testbed for theoretical method development. Furthermore, studies of free silica under compression (2-7) reveal a rich variety of structures and properties, which are prototypical for the behavior of Earth minerals from the surface through the crust and mantle. However, the abundance of free silica phases and their role in the structure and dynamics of deep Earth is still unknown.Free silica phases may form in the Earth as part of subducted slabs (8) or due to chemical reactions with molten iron (9). Determination of the phase stability fields and thermodynamic equations of state are crucial to understand the role of silica in Earth. The ambient phase, quartz, is a fourfold coordinated, hexagonal struc...