2019
DOI: 10.1038/s41467-019-13332-w
|View full text |Cite|
|
Sign up to set email alerts
|

Quantum nanophotonics with group IV defects in diamond

Abstract: Diamond photonics is an ever-growing field of research driven by the prospects of harnessing diamond and its colour centres as suitable hardware for solid-state quantum applications. The last two decades have seen the field shaped by the nitrogen-vacancy (NV) centre with both breakthrough fundamental physics demonstrations and practical realizations. Recently however, an entire suite of other diamond defects has emerged—group IV colour centres—namely the Si-, Ge-, Sn- and Pb-vacancies. In this perspective, we … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

5
291
1
8

Year Published

2019
2019
2023
2023

Publication Types

Select...
8
1

Relationship

2
7

Authors

Journals

citations
Cited by 368 publications
(305 citation statements)
references
References 129 publications
5
291
1
8
Order By: Relevance
“…Diamond color centers are attractive as, besides displaying photostable fluorescence, they are solid-state systems, which can retain their quantum spin-optical properties at room temperature. The most studied diamond color centers are the nitrogen-vacancy (NV) center [165] and the group IV (SiV, GeV, SnV, and PbV) [166] color centers. These have been successfully employed for quantum-enabled nanoscale sensing [167,168] and are an obvious choice for nanothermometry.…”
Section: Nanodiamondsmentioning
confidence: 99%
“…Diamond color centers are attractive as, besides displaying photostable fluorescence, they are solid-state systems, which can retain their quantum spin-optical properties at room temperature. The most studied diamond color centers are the nitrogen-vacancy (NV) center [165] and the group IV (SiV, GeV, SnV, and PbV) [166] color centers. These have been successfully employed for quantum-enabled nanoscale sensing [167,168] and are an obvious choice for nanothermometry.…”
Section: Nanodiamondsmentioning
confidence: 99%
“…For example, the silicon-vacancy (SiV) center in diamond (Figure 1a) is among the most attractive room-temperature single-photon emitters. It is known for polarized emission at a wavelength of about 738 nm from the single negatively charged state, which features a narrow spectrum, large Debye-Waller factor at room and even high temperatures [5][6][7][8]. However, efficient electrical excitation of the SiV centers, as well as other color centers in diamond, is very challenging due to the inability to create a high density of free carriers, which is essential for bright single-photon electroluminescence [9,10] (Figure 1b).…”
Section: Introductionmentioning
confidence: 99%
“…Для создания однофотонных источников излучения, люминесцентных биомаркеров и термометрии высокого разрешения требуются центры окраски с интенсивной и узкой бесфононной линией (БФЛ) фотолюминесценции (ФЛ), низкой спектральной диффузией БФЛ [6]. Перечисленным требованиям удовлетворяют центры окраски, включающие междоузельный атом IV группы (Si, Ge, Sn и Pb) и две ближайших вакансии в соседних узлах решетки [7]. Наиболее изученным представителем этого семейства центров является центр окраски кремний-вакансия (SiV) в отрицательном зарядовом состоянии.…”
Section: Introductionunclassified
“…В центрах окраски GeV и SiV спин-орбитальное взаимодействие приводит к расщеплению основного ( 2 E g ) и возбужденного ( 2 E u ) состояний на два состояния (тонкая структура центра) [7]. Значение величины расщепления основного состояния центра GeV (150 GHz) выше, чем центра SiV (47 GHz), что обуславливает большее время спиновой когерентности [14].…”
Section: Introductionunclassified