2024
DOI: 10.1007/s11227-024-06022-y
|View full text |Cite
|
Sign up to set email alerts
|

Quantum particle Swarm optimized extreme learning machine for intrusion detection

Han Qi,
Xinyu Liu,
Abdullah Gani
et al.

Abstract: Ensuring a secure online environment hinges on the timely detection of network attacks. Nevertheless, existing detection methods often grapple with the delicate balance between speed and accuracy. In this paper, we introduce a novel intrusion detection algorithm that marries quantum particle swarm optimization with an extreme learning machine (QPSO-ELM). Firstly, we present a feature selection algorithm grounded in partitioned gains to distill vital features from data samples, thereby diminishing feature count… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2025
2025

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 25 publications
0
0
0
Order By: Relevance