Players’ choices in quantum game schemes are often correlated by a quantum state. This enables players to obtain payoffs that may not be achievable when classical pure or mixed strategies are used. On the other hand, players’ choices can be correlated due to a classical probability distribution, and if no player benefits by a unilateral deviation from the vector of recommended strategies, the probability distribution is a correlated equilibrium. The aim of this paper is to investigate relation between correlated equilibria and Nash equilibria in the MW-type schemes for quantum games.