What gravitational field is generated by a massive quantum system in a spatial superposition? Despite decades of intensive theoretical and experimental research, we still do not know the answer. On the experimental side, the difficulty lies in the fact that gravity is weak and requires large masses to be detectable. However, it becomes increasingly difficult to generate spatial quantum superpositions for increasingly large masses, in light of the stronger environmental effects on such systems. Clearly, a delicate balance between the need for strong gravitational effects and weak decoherence should be found. We show that such a trade off could be achieved in an optomechanics scenario that allows to witness whether the gravitational field generated by a quantum system in a spatial superposition is in a coherent superposition or not. We estimate the magnitude of the effect and show that it offers perspectives for observability.Quantum field theory is one of the most successful theories ever formulated. All matter fields, together with the electromagnetic and nuclear forces, have been successfully embedded in the quantum framework. They form the standard model of elementary particles, which not only has been confirmed in all advanced accelerator facilities, but has also become an essential ingredient for the description of the Universe and its evolution.In light of this, it is natural to seek a quantum formulation of gravity as well. Yet, the straightforward procedure for promoting the classical field as described by general relativity, into a quantum field, does not work. Several strategies have been put forward, which turned into very sophisticated theories of gravity, the most advanced being string theory and loop quantum gravity. Yet, none of them has reached the goal of providing a fully consistent quantum theory of gravity.At this point, one might wonder whether the very idea of quantizing gravity is correct [1][2][3][4][5][6][7][8][9][10][11][12][13][14][15][16][17]. At the end of the day, according to general relativity, gravity is rather different from all other forces. Actually, it is not a force at all, but a manifestation of the curvature of spacetime, and there is no obvious reason why the standard approach to the quantization of fields should work for spacetime as well. A future unified theory of quantum and gravitational phenomena might require a radical revision not only of our notions of space and time, but also of (quantum) matter. This scenario is growing in likeliness [18][19][20].From the experimental point of view, it has now been ascertained that quantum matter (i.e. matter in a genuine quantum state, such as a coherent superposition state) couples to the Earth's gravity in the most obvious way. This has been confirmed in neutron [21], atom [22] interferometers and used for velocity selection in molecular interferometry [23]. However, in all cases, the gravitational field is classical, i.e. it is generated by a distribution of matter (the Earth) in a fully classical state. Therefore, the pleth...