Northumbria University has developed Northumbria Research Link (NRL) to enable users to access the University's research output. Copyright © and moral rights for items on NRL are retained by the individual author(s) and/or other copyright owners. Single copies of full items can be reproduced, displayed or performed, and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided the authors, title and full bibliographic details are given, as well as a hyperlink and/or URL to the original metadata page. The content must not be changed in any way. Full items must not be sold commercially in any format or medium without formal permission of the copyright holder. The full policy is available online: http://nrl.northumbria.ac.uk/policies.html This document may differ from the final, published version of the research and has been made available online in accordance with publisher policies. To read and/or cite from the published version of the research, please visit the publisher's website (a subscription may be required.)
arXiv:1201.1389v1 [quant-ph] 6 Jan 2012Huygens-Fresnel-Kirchhoff construction for quantum propagators with application to diffraction in space and time
Arseni GoussevMax Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, D-01187 Dresden, Germany (Dated: January 9, 2012)We address the phenomenon of diffraction of non-relativistic matter waves on openings in absorbing screens. To this end, we expand the full quantum propagator, connecting two points on the opposite sides of the screen, in terms of the free particle propagator and spatio-temporal properties of the opening. Our construction, based on the Huygens-Fresnel principle, describes the quantum phenomena of diffraction in space and diffraction in time, as well as the interplay between the two. We illustrate the method by calculating diffraction patterns for localized wave packets passing through various time-dependent openings in one and two spatial dimensions.