Charge‐based field‐effect transistors (FETs) greatly suffer from unavoidable carrier scattering and heat dissipation. Analogous to valley degree of freedom in semiconductors, chiral anomaly current in Weyl/Dirac semimetals is theoretically predicted to be nearly nondissipative over long distances, but still lacks experimental ways to efficiently control its transport. Here, field‐effect chirality devices are demonstrated with Dirac semimetal PtSe2, in which its Fermi level is close to the Dirac point in the conduction band owing to intrinsic defects. The chiral anomaly is further corroborated by the planar Hall effect and nonlocal valley transport measurement, which can also be effectively modulated by external fields, showing robust nonlocal valley transport with micrometer diffusion length. Similar to charge‐based FETs, the chiral conductivity in PtSe2 devices can be modulated by electrostatic gating with an ON/OFF ratio of more than 103. Basic logic functions in the devices are also demonstrated with electric and magnetic fields as input signals.