Domoic acid is a neurotoxin secreted by the marine diatom genus,Pseudo-nitzschia, during toxic algal bloom events. California sea lions (Zalophus californianus) are exposed to domoic acid through ingestion of fish that feed on toxic diatoms, resulting in a domoic acid toxicosis (DAT), which can vary from mild to fatal. Sea lions with mild disease can be treated if toxicosis is detected early after exposure, therefore, rapid diagnosis of DAT is essential but also challenging. In this work, we performed multi-omics analyses, specifically proteomic and lipidomic, on blood samples from 31 California sea lions. Fourteen sea lions were diagnosed with DAT based on clinical signs and postmortem histological examination of brain tissue, and 17 had no evidence of DAT. Proteomic analyses revealed three apolipoproteins with statistically significant lower abundance in the DAT individuals compared to the non-DAT individuals. These proteins are known to transport lipids in the blood. Lipidomic analyses highlighted 29 lipid levels that were statistically different in the DAT versus non-DAT comparison, 28 of which were downregulated while only one was upregulated. Furthermore, of the 28 downregulated lipids, 15 were triglycerides, illustrating their connection with the perturbed apolipoproteins and showing their potential for use in rapid DAT diagnoses.