Transistor is considered as a building block for electronic circuitry, as it is used to control the flow of electric current across its semiconducting channel while applying potential difference along its metallic electrodes (the source and the drain). The flow of current is regulated by a third electrode called the gate, that is separated from a semiconducting channel by an electrically insulating material, as shown schematically in Figure 1(a). When a large amount of electric field (F) [electric potential (V) normalized by channel length (L), F = V/L], is applied to a transistor, the kinetic energy of electronic charge carriers in semiconducting channel increases, resulting in the aggressive interaction of carriers with each other and with immediate environment. These charge collision events in association with atomic oscillations, also called phonons, increase the device operating temperature, and this effect is called Joule heating [1]. The extent of Joule/thermal power (P) generated depends on the electrical resistance (R) of a material and the square of current (I) passed across it, as P=I 2 R [2]. In a typical integrated circuit, there are over a billion transistors that generate significant amount of thermal energy. If the Joule energy is not dissipated properly, it may lead to malfunction or eventual burning of transistors hence circuits [3].