Quasi-Dense Matching for Oblique Stereo Images through Semantic Segmentation and Local Feature Enhancement
Guobiao Yao,
Jin Zhang,
Fengqi Zhu
et al.
Abstract:This paper proposes a quasi-dense feature matching algorithm that combines image semantic segmentation and local feature enhancement networks to address the problem of the poor matching of image features because of complex distortions, considerable occlusions, and a lack of texture on large oblique stereo images. First, a small amount of typical complex scene data are used to train the VGG16-UNet, followed by completing the semantic segmentation of multiplanar scenes across large oblique images. Subsequently, … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.