Abstract-Phase unwrapping is the inference of absolute phase from modulo-2π phase. This paper introduces a new energy minimization framework for phase unwrapping. The considered objective functions are first-order Markov random fields. We provide an exact energy minimization algorithm, whenever the corresponding clique potentials are convex, namely for the phase unwrapping classical L p norm, with p ≥ 1. Its complexity is KT (n, 3n), where K is the length of the absolute phase domain measured in 2π units and T (n, m) is the complexity of a max-flow computation in a graph with n nodes and m edges. For nonconvex clique potentials, often used owing to their discontinuity preserving ability, we face an NP-hard problem for which we devise an approximate solution. Both algorithms solve integer optimization problems, by computing a sequence of binary optimizations, each one solved by graph cut techniques. Accordingly, we name the two algorithms PUMA, for phase unwrapping max-flow/min-cut. A set of experimental results illustrates the effectiveness of the proposed approach and its competitiveness in comparison with state-of-the-art phase unwrapping algorithms.