2023
DOI: 10.1016/j.egyai.2023.100232
|View full text |Cite
|
Sign up to set email alerts
|

Quasi-optimal control of a solar thermal system via neural networks

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
1
0
1

Year Published

2023
2023
2023
2023

Publication Types

Select...
1
1
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(2 citation statements)
references
References 33 publications
0
1
0
1
Order By: Relevance
“…Meanwhile, in [ 26 ], indirect neural control for an unmanned surface vessel is presented considering injection and deception attacks. Then, in [ 27 , 28 ], a quasi-optimal neural control for solar thermal systems and neural-based fixed optimal control for the attitude tracking of a space vehicle with output constraints are evinced, respectively. Finally, in [ 29 , 30 ], a space manipulator neural output constrained control for a space manipulator using a Lyapunov tan-barrier functional and the neural network control of nuclear plants are evinced, respectively.…”
Section: Introductionmentioning
confidence: 99%
“…Meanwhile, in [ 26 ], indirect neural control for an unmanned surface vessel is presented considering injection and deception attacks. Then, in [ 27 , 28 ], a quasi-optimal neural control for solar thermal systems and neural-based fixed optimal control for the attitude tracking of a space vehicle with output constraints are evinced, respectively. Finally, in [ 29 , 30 ], a space manipulator neural output constrained control for a space manipulator using a Lyapunov tan-barrier functional and the neural network control of nuclear plants are evinced, respectively.…”
Section: Introductionmentioning
confidence: 99%
“…control predictivo) que necesitan de un modelo del sistema real y en los casos donde es muy complicado disponer de un modelo aproximado definido matemáticamente o mediante algún otro método de identificación Calle Chojeda et al (2022); Gomez et al (2022); Zabaljauregi et al (2023). Estos modelos neuronales dinámicos se logran en todos los casos mediante una buena metodología en la fase de entrenamiento de dichas RNA, considerando aspectos tan relevantes como: el rango de operación del sistema real, las dinámicas predominantes en el tiempo que marcan los períodos de muestreo adecuados, una experimentación ajustada al rango de trabajo del sistema para recoger ejemplos de funcionamiento representativos del sistema y un estudio detallado de las posibles estructuras a configurar con la RNA elegida (Zhao et al (2023);Alhajeri et al (2021); Li and Tong (2021); Zhang et al (2023); Friese et al (2023)).…”
Section: Introductionunclassified