With the advances in the optimization of magnetic field equilibria, stellarators have become a serious alternative to the tokamak, bringing this concept to the forefront of the pursuit of fusion energy. In order to be successful in experimentally demonstrating the viability of optimized stellarators, we must overcome any potential hurdles in the construction of its electromagnetic coils. Finding cost-effective ways of increasing the number of operating optimized stellarators could be key in cementing this magnetic confinement concept as a contender for a reactor. In this work, an alternative to modular coils, permanent magnets, are studied and are shown to enable the possibility of converting a tokamak into a stellarator. This is then applied to the case of ISTTOK tokamak, where an engineering design study is conducted.