To improve quasi-static axial crushing performances of thin-wallled triangular tubes, frusta structures were designed and fabricated. Quasi-static axial compression experiments were carried out to reveal the collapse mode and energy absorption characteristic of the triangular frusta tube. Peak loads and mean crushing forces (MCFs) of tubes with different taper angles were compared. In-extensible and extensible collapse modes were suggested to predict the MCF of the triangular frusta tube with small and great taper angles, respectively. A new collapse mode, inward folding, was observed in the experiments. An energy absorption stability factor was defined to evaluate the anti-crushing efficiency of the triangular frusta tube. With greater taper angles, the energy absorption stability factor is much closer to 1, denoting more stable deformation style. It is concluded that frusta structures with taper angles effectively enhance the anti-crushing efficiency and stability of thin-walled triangular tubes.